Close banner

2022-05-09 07:54:49 By : Ms. Fay Huang

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature volume  605, pages 46–50 (2022 )Cite this article

Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks—qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems1,2,3. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment3,4,5. Here we report our experimental realization of a qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum6,7,8,9,10,11,12,13. By integrating an electron trap in a circuit quantum electrodynamics architecture14,15,16,17,18,19,20, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are implemented to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns. These results indicate that the electron-on-solid-neon qubit already performs near the state of the art for a charge qubit21.

This is a preview of subscription content

Get full journal access for 1 year

All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.

Get time limited or full article access on ReadCube.

All prices are NET prices.

The data that support the findings of this study are available from the corresponding authors on request.

The computer codes that are used in this study are available from the corresponding authors on request.

Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

ADS  CAS  PubMed  Google Scholar 

Popkin, G. Quest for qubits. Science 354, 1090–1093 (2016).

ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, 253 (2021).

Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

ADS  CAS  Google Scholar 

Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

ADS  CAS  Google Scholar 

Cole, M. W. & Cohen, M. H. Image-potential-induced surface bands in insulators. Phys. Rev. Lett. 23, 1238 (1969).

ADS  CAS  Google Scholar 

Cole, M. W. Electronic surface states of a dielectric film on a metal substrate. Phys. Rev. B 3, 4418 (1971).

ADS  Google Scholar 

Leiderer, P. Electrons at the surface of quantum systems. J. Low Temp. Phys. 87, 247–278 (1992).

ADS  CAS  Google Scholar 

Platzman, P. & Dykman, M. I. Quantum computing with electrons on liquid helium. Science 284, 1967–1969 (1999).

CAS  PubMed  Google Scholar 

Smolyaninov, I. I. Electrons on solid hydrogen and solid neon surfaces. Int. J. Mod. Phys. B 15, 2075–2106 (2001).

ADS  CAS  Google Scholar 

Dykman, M. I., Platzman, P. M. & Seddighrad, P. Qubits with electrons on liquid helium. Phys. Rev. B 67, 155402 (2003).

ADS  Google Scholar 

Lyon, S. A. Spin-based quantum computing using electrons on liquid helium. Phys. Rev. A 74, 052338 (2006).

ADS  Google Scholar 

Bradbury, F. R. et al. Efficient clocked electron transfer on superuid helium. Phys. Rev. Lett. 107, 266803 (2011).

ADS  CAS  PubMed  Google Scholar 

Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

ADS  CAS  PubMed  Google Scholar 

Blais, A., Grimsmo, A. L. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

ADS  MathSciNet  CAS  Google Scholar 

Schuster, D. I., Fragner, A., Dykman, M. I., Lyon, S. A. & Schoelkopf, R. J. Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010).

ADS  CAS  PubMed  Google Scholar 

Yang, G. et al. Coupling an ensemble of electrons on superfluid helium to a superconducting circuit. Phys. Rev. X 6, 011031 (2016).

Koolstra, G., Yang, G. & Schuster, D. I. Coupling a single electron on superfluid helium to a superconducting resonator. Nat. Commun. 10, 5323 (2019).

ADS  PubMed  PubMed Central  Google Scholar 

Jin, D. Quantum electronics and optics at the interface of solid neon and superfluid helium. Quantum Sci. Technol. 5, 035003 (2020).

ADS  Google Scholar 

Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

CAS  Google Scholar 

Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).

Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398, 786–788 (1999).

ADS  CAS  Google Scholar 

Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

ADS  CAS  PubMed  Google Scholar 

Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

ADS  CAS  PubMed  Google Scholar 

Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

ADS  CAS  PubMed  Google Scholar 

Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

ADS  CAS  PubMed  Google Scholar 

Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 599–603 (2018).

ADS  CAS  PubMed  Google Scholar 

Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

ADS  CAS  PubMed  Google Scholar 

Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

ADS  CAS  PubMed  Google Scholar 

Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

ADS  CAS  PubMed  Google Scholar 

Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor-semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).

Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995).

ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

ADS  CAS  PubMed  Google Scholar 

Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

ADS  CAS  Google Scholar 

Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

ADS  Google Scholar 

Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

ADS  CAS  PubMed  Google Scholar 

Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999).

ADS  CAS  Google Scholar 

Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000).

ADS  CAS  PubMed  Google Scholar 

Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

ADS  CAS  Google Scholar 

Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

ADS  CAS  PubMed  Google Scholar 

Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

ADS  CAS  PubMed  Google Scholar 

Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

CAS  PubMed  Google Scholar 

Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

ADS  CAS  Google Scholar 

Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

ADS  CAS  PubMed  Google Scholar 

Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

ADS  CAS  PubMed  Google Scholar 

Atzori, M. & Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

CAS  PubMed  Google Scholar 

Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

ADS  Google Scholar 

Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

ADS  CAS  PubMed  Google Scholar 

Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

ADS  CAS  PubMed  Google Scholar 

Sheludiakov, S. et al. Electrons trapped in solid neon–hydrogen mixtures below 1 K. J. Low Temp. Phys. 195, 365–377 (2019).

ADS  CAS  Google Scholar 

Jacobsen, R. T., Penoncello, S. G. & Lemmon, E. W. In Thermodynamic Properties of Cryogenic Fluids (eds Weisend II, J. G. & Jeong S.) 31–287 (Springer, 1997).

Pollack, G. L. The solid state of rare gases. Rev. Mod. Phys. 36, 748 (1964).

ADS  CAS  Google Scholar 

Batchelder, D. N., Losee, D. L. & Simmons, R. O. Measurements of lattice constant, thermal expansion, and isothermal compressibility of neon single crystals. Phys. Rev. 162, 767 (1967).

ADS  CAS  Google Scholar 

Zavyalov, V., Smolyaninov, I., Zotova, E., Borodin, A. & Bogomolov, S. Electron states above the surfaces of solid cryodielectrics for quantum-computing.’. J. Low Temp. Phys. 138, 415–420 (2005).

ADS  CAS  Google Scholar 

Leiderer, P., Kono, K. & Rees, D. In Proc. 11th International Conference on Cryocrystals and Quantum Crystals (ed. Vasiliev, S.) 67–67 (University of Turku, 2016).

Kajita, K. A new two-dimensional electron system on the surface of solid neon. Surf. Sci. 142, 86–95 (1984).

ADS  CAS  Google Scholar 

Nilsson, A., Pettersson, L. G. & Norskov, J. Chemical Bonding at Surfaces and Interfaces (Elsevier, 2011).

Ibach, H. Physics of Surfaces and Interfaces Vol. 2006 (Springer, 2006).

Pozar, D. M. Microwave Engineering (Wiley, 2011).

Walls, D. F. & Milburn, G. J. Quantum Optics (Springer Science & Business Media, 2007).

Schuster, D. I. Circuit Quantum Electrodynamics PhD thesis, Yale Univ. (2007).

Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

ADS  Google Scholar 

Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

ADS  Google Scholar 

Chen, Z. Metrology of Quantum Control and Measurement in Superconducting Qubits PhD thesis, Univ. of California Santa Barbara (2018).

This work was performed at the Center for Nanoscale Materials (CNM), a US Department of Energy Office of Science User Facility, and supported by the US Department of Energy, Office of Science, under Contract no. DE-AC02-06CH11357. D.J. and X.L. acknowledge addtional support from Argonne National Laboratory Directed Research and Development (LDRD) Program for device characterization effort. D.J. acknowledges additional support from the Julian Schwinger Foundation (JSF) for Physics Research for hardware component upgrade. This work was partially supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award no. DMR-2011854. This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from SHyNE, a node of the National Science Foundations National Nanotechnology Coordinated Infrastructure (NSF NNCI-1542205). D.I.S. and B.D. acknowledge support from NSF grant no. DMR-1906003. K.W.M. acknowledges support from NSF grant no. PHY-1752844 (CAREER) and use of facilities at the Institute of Materials Science and Engineering at Washington University. W.G. acknowledges support from NSF grant no. DMR-2100790 and the National High Magnetic Field Laboratory, which is funded through the NSF Cooperative Agreement no. DMR-1644779 and the State of Florida. G.Y. acknowledges support from the National Science Foundation under Cooperative Agreement no. PHY-2019786 (the NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/). D.J. thanks M. W. Cole, M. I. Dykman, S. K. Gray, P. Leiderer, D. Lopez and T. Rajh for inspiring discussions. The CNM team thanks MIT Lincoln Laboratory and Intelligence Advanced Research Projects Activity (IARPA) for providing the traveling-wave parametric amplifier (TWPA) used in this project.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA

Xianjing Zhou, Xufeng Zhang, Xu Han, Xinhao Li, Ralu Divan & Dafei Jin

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, USA

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA

Brennan Dizdar & David I. Schuster

National High Magnetic Field Laboratory, Tallahassee, FL, USA

Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA

Department of Physics, Washington University in St. Louis, St. Louis, MO, USA

Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

X. Zhou and D.J. devised the experiment and wrote the manuscript. X. Zhou performed the experiment. G.K., G.Y. and D.I.S. designed the device. G.K. and G.Y. fabricated the device. X. Zhou, X. Zhang, X.H. and D.J. built the experimental setup. B.D. simulated the device. X.L. and R.D. characterized the device. W.G. advised the sample processing and theoretical modelling. K.W.M. and D.I.S. advised the measurement and revised the manuscript. D.J. conceived the idea and led the project. All authors contributed to the manuscript.

Correspondence to Kater W. Murch or Dafei Jin.

Authors declare no competing interests.

Nature thanks Mark Dykman, Erika Kawakami and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Details are explained in the text where they are referred to.

a, Lid part of the cell with all the coax connection. It contains 14 hermetic SMP feedthroughs for d.c. and RF signals, 2 SMP feedthroughs for electron source, and a stainless steel tube for neon filling. b, Pedestal part of the cell with a printed circuit board (PCB) mounted underneath a stack of copper sheets that suppress unwanted microwave modes. c, Two tungsten filaments, mounted in parallel on the back side of the lid in (a), as the electron source by thermionic emission. The inset shows a scanning electron microscopy (SEM) image of one tungsten filament.

The solid-liquid-gas triple point is at (24.56 K, 0.43 bar) and the liquid-gas critical point is at (44.49 K, 27.69 bar).

a, In the case of neon fully filling the channel. b, In the case of 5–10 nm neon coating the device. At t = 0, pulse train is sent to the tungsten filaments and electrons are generated and deposited onto the resonator. A sudden change in the spectrum can be seen. After about 3 s, the spectrum stabilizes and shows a frequency shift about 10 MHz for (a) and almost no shift for (b).

a, Normalized transmission amplitude (A/A0)2 probed at the bare resonator frequency fr as a function of the resonator-guard voltage Vrg and the trap voltage Vt. b, Transmission phase ϕ, corresponding to the amplitude in (a), as a function of Vrg and Vt. c, Line scanned normalized amplitude (A/A0)2 and phase ϕ as a function of Vrg at Vt = 175 mV. A dip in amplitude and 2π phase jump occur when the qubit frequency matches the resonator frequency.

a, Normalized transmission amplitude (A/A0)2 as a function of probe frequency Δfp = fp − fr and resonator-guard voltage ΔVrg (detuning from the resonance condition). b, Transmission amplitude (A/A0)2 versus a probe frequency when qubit and resonator is on resonance. The fitting curve with input-output theory gives a coupling strength g/2π about 4.5 MHz and qubit decay rate γ/2π about 3.4 MHz.

Besides the |0⟩ → |1⟩ transition line, which is marked with black dashed line, there are other transition lines visible. The line immediately next to the main transition line is the |1⟩ → |2⟩ transition. At Δ/2π = fq − fr = −100 MHz detuning, the anharmonicity α/2π ≡ f|1⟩ →|2⟩ − f|0⟩ →|1⟩ ≈ 40 MHz.

a, Trapping potential V versus position y. The shape symmetrically leans to the left and right by tuning the resonator-guard voltage Vrg with respect to the ‘sweet spot’ voltage Vss = 339 mV. For Vrg > Vss, we take Vrg = 516 mV and for Vrg > Vss, we take Vrg = 162 mV, both of which are on-resonance conditions in experiment when the qubit frequency fq matches the resonator frequency fr. b–d, Electron wavefunctions on the ground state |0⟩ , first excited state |1⟩ , and second excited state |2⟩ , respectively, for the three different Vrg’s. They extend about 500 nm in space and are left and right shifted with the potential changes. e, Qubit spectrum under frequency scanning Δfs = fs − fr and voltage Vrg detuning, for |0⟩ → |1⟩ and |1⟩ → |2⟩ transitions. The first transition (in red) matches well with the experimental observation shown in Fig. 3a. f, Magnified qubit spectrum of (e) in the ±100 MHz detuning range. The second transition has a positive anharmonicity α = 40 MHz above the first transition at −100 MHz detuning. The overall spectral profile also matches the experiment observation shown in Extended Data Fig. 7, taking account of the practical spectrum deformation due to the overly strong pumping near resonance.

Zhou, X., Koolstra, G., Zhang, X. et al. Single electrons on solid neon as a solid-state qubit platform. Nature 605, 46–50 (2022). https://doi.org/10.1038/s41586-022-04539-x

DOI: https://doi.org/10.1038/s41586-022-04539-x

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Nature (Nature) ISSN 1476-4687 (online) ISSN 0028-0836 (print)

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.